Pearson's correlation between three variables

Pauline Vos has written an article called Pearson's correlation between three variables; using students' basic knowledge of geometry for an exercise in mathematical statistics. The article was recently published in International Journal of Mathematical Education in Science and Technology. Here is a copy of the article abstract:
When studying correlations, how do the three bivariate correlation coefficients between three variables relate? After transforming Pearson's correlation coefficient r into a Euclidean distance, undergraduate students can tackle this problem using their secondary school knowledge of geometry (Pythagoras' theorem and similarity of triangles). Through a geometric interpretation, we start from two correlation coefficients rAB and rBC and then estimate a range for the third correlation rAC. In the case of three records (n = 3), the third correlation rAC can only attain two possible values. Crossing borders between mathematical disciplines, such as statistics and geometry, can assist students in deepening their conceptual knowledge.