2008/07/04

Numerical problems on energy

Nicholas Emepue and Kola Soyibo have written an article that was recently published in International Journal of Science and Mathematics Education. The article is entitled Correlations Among Five Demographic Variables and the Performance of Selected Jamaican 11th-graders on Some Numerical Problems on Energy. Here is the abstract:
This study was designed to assess whether the level of performance of selected Jamaican 11th-grade physics students on some numerical problems on the energy concept was satisfactory and if there were significant differences in their performance linked to their gender, socioeconomic background (SEB), school location, English language and mathematical abilities. The 331 sampled students consisted of 213 boys and 118 girls; 197 students were from a high SEB and 134 students from a low SEB; 296 students were from seven urban schools and 35 students from three rural schools; 112, 153 and 66 of the students had high, average and low English language abilities, respectively, while 144, 81 and 106 of the students had high, average and low mathematical abilities, respectively. An Energy Concept Test (ECT) consisting of six structured numerical questions was employed for data collection. The results indicated that although the students’ level of performance was regarded as fairly satisfactory, there was a lot of room for improvement. There were statistically significant differences in the students’ performance on the ECT linked to SEB, and mathematical abilities in favour of students from a high SEB, and high mathematical abilities, respectively. There was a positive, statistically significant but weak correlation between the students’ (a) mathematical abilities, and (b) English language abilities and their performance on the ECT, while there were no correlations among their gender, school location, and SEB and their performance on the ECT.

1 comments:

Anonymous said...

There should be a strong correlation between student's mathematical abilities and their performance on physics.